





**FINNED TUBE** Air Cooled Heat Exchanger

## **Brief Introduction**

Air Cooled Heat Exchanger (ACHE) is a heat rejection equipment where the excess process heat is rejected to the atmosphere. It works on the principle of convection and conduction to dissipate heat from process fluid to air.

Heating media can use Steam, Thermal Oil, Flue gas.

Cooling media can use Cooling Water, Chilled Water, Ambient Air

Very easy installation and placement of the unit does not require a large area







We perform Design and fabrication according to customer requirements using very accurate Software Engineering.

Then we carry out fabrication in our workshop by going through very strict quality control procedures and stages.

We are committed to maintaining the quality of materials and the end result of excellent unit performance as our commitment to maintaining customer trust.

| Application Unit          |                        |              |                   |  |  |  |
|---------------------------|------------------------|--------------|-------------------|--|--|--|
|                           |                        |              |                   |  |  |  |
| Air Cooler Heat Exchanger | Thermal Oil Air Heater | After Cooler | Steam Air Heater  |  |  |  |
|                           | ×                      | ×            | ×                 |  |  |  |
| 🎽 Gas Cooler              | Radiator cooler        | Dehumidifier | Economizer        |  |  |  |
|                           |                        |              |                   |  |  |  |
| > Oil Cooler              | > Air Heater           | Inter Cooler | Charge Air Cooler |  |  |  |
|                           |                        |              |                   |  |  |  |
|                           |                        |              |                   |  |  |  |
|                           |                        |              |                   |  |  |  |
|                           |                        |              |                   |  |  |  |

## **Features**

- 1. Excellent heat transfer enables a compact device design
- 2. Materials can be selected according to the specifications
- 3. Heaters can be combined according to the specifications
- 4. A combination type, therefore replacement of individual sections is possible
- 5. Combinations can be selected according to the objective, from low pressure to high pressure



**STEAM TO AIR FOR AIR HEATER** 

**GAS COOLER HEAT EXCHANGER** 

Tension wound finned tubes, embedded finned tubes and extruded finned tubes

are main devices for air coolers and the common application fields are:

- Heat exchangers for power plants (electric, nuclear, thermal and geothermal power plants)
- Steam condensate systems
- Chemical and petrochemical industry
- Food processing plants and refrigeration technology
- Industrial (steel mills, incinerators, gas compression facilities).

By providing a choice of tube and fin materials according to application needs by adjusting to the type of fluid used, we provide a choice of standard tubes with a very unique construction.

We offers different finned tubes: tension wound finned tubes, embeddedfinned tubes and extruded finned tubes.

Tension wound finned tubes are formed by winding a strip made of aluminium or copper around the tube under tension. The strip winding technology provides different types of fins: G-Fin, L-Fin, LL-Fin, KL-Fin. Embedded fins (G-Fins) are made by winding aluminium or copper strip into a helical groove machined on the outer surface of the tube.



Extruded finned tubes are bimetallic tubes whose outer aluminium surface is finned by cold plastic deformation.



Air Cooled Heat Exchanaer – Finned Tube

Fins

EN573 – 3 Aluminium Alloy 1050 or 1060

SB152 – B152 Coope

| Technical Spesification-G-fin; L-fin; LL-fin; KL-fin; Extruded-fin Finned Tubes |        |    |         |      |      |     |               |       |              |           |
|---------------------------------------------------------------------------------|--------|----|---------|------|------|-----|---------------|-------|--------------|-----------|
| Fin Type                                                                        | Length |    | Tube OD |      | Thk  |     | Fins Diameter |       | Fins Dencity |           |
|                                                                                 | m      | ft | mm      | inch | mm   | BWG | mm            | Inch  | Fins/m       | Fins/inch |
| L-fin                                                                           | 0.3    | 1  | 15.88   | 5/8" | 0.89 | 20  | 38.10         | 1-1/2 | 236          | 6         |
| LL-fin                                                                          |        |    |         |      |      |     |               |       |              |           |
| KL-fin                                                                          |        |    |         |      |      |     |               |       |              |           |
| G-fin                                                                           | 18     | 59 | 50.8    | 2″   | 3.76 | 9   | 76.20         | 3"    | 472          | 12        |
| Extruded                                                                        |        |    |         |      |      |     |               |       |              |           |

| Technical Spesification-G-fin; L-fin; LL-fin; KL-fin; Extruded-fin Finned Tubes |              |            |                        |  |
|---------------------------------------------------------------------------------|--------------|------------|------------------------|--|
| Fin Type                                                                        | Working Temp | Resistance |                        |  |
|                                                                                 |              | Corrosion  | Mechanical             |  |
| L-fin                                                                           | 135 ~ 155 °C | 1          | $\downarrow\downarrow$ |  |
| LL-fin                                                                          | 155 ~ 165 °C | <b>↑</b>   | Ļ                      |  |
| KL-fin                                                                          | 165 ~ 185 °C | <b>↑</b>   | ſ                      |  |
| G-fin                                                                           | 380 ~ 420 °C | 1          | ſ                      |  |
| Extruded                                                                        | 280 ~ 300 °C | <b>↑</b> ↑ | <b>↑</b> ↑             |  |

| Inci | AACTI | inne | and |             |
|------|-------|------|-----|-------------|
|      |       |      | anu | <b>LESL</b> |
|      |       |      |     |             |

G-fin; L-fin; LL-fin; KL-fin; Extruded-fin Finned Tubes

**Chemical Composition** 

**Mechanical Properties** 

**Hydrostatic Test** 

**Pneumatic Test** 

**Boroscopic Inspection** 

**Eddy Current Test** 

Tensile Test (Only for Bimetallic Tube)

## **Contact Information**

